二項関係を保つ/反映する写像

集合\(A,B\)が、それぞれ二項関係\(R,S\)を備えており、\(f\)を\(A\)から\(B\)への写像とする。
【定義】
任意の\(x,y\in A\)について\(xRy\rightarrow f(x)Sf(y)\)が成り立つとき、「\(f\)は関係を保つ(preserves)」あるいは「\(f\)は準同型写像である」という。
任意の\(x,y\in A\)について\(f(x)Sf(y)\rightarrow xRy\)が成り立つとき、「\(f\)は関係を反映する(reflects)」という。
【例】\(R,S\)として特に等号を考えると、「\(f\)は単射である」は「\(f\)は『\(\neq\)』を保つ」とも「\(f\)は『\(=\)』を反映する」とも言い換えられる。
【定義】\(f\)が全単射であり、\(f\)および\(f^{-1}\)がともに関係を保つとき、「\(f\)は同型写像である」という。
\(f\)が全単射のとき、「\(f\)が関係を反映する」ことと「\(f^{-1}\)が関係を保つ」こととは同値である。したがって、上の定義は「全単射\(f\)が関係を保ってしかも反映するとき……」と言い換えてもよい。

以下、特に\(R,S\)が全順序関係である場合を考える。
\(f\)が\(\leq\)を保つことと、\(f\)が\( < \)を反映することは同値である。これらを(1)とする。
\(f\)が\( < \)を保つことと、\(f\)が\(\leq\)を反映することは同値である。これらを(2)とする。
「(1)かつ『\(f\)は単射である』」と、(2)とは同値である。つまり、(2)は\(f\)の単射性を含意しており、(1)より強い条件である。
このことから、単射においては「保たれる/反映される関係が\(\leq\)なのか\( < \)なのか」に注意を払う必要が無いことも分かる。
さらに\(f\)が全単射ならば、上記の議論により(1)のみで\(f\)が同型写像であることが言える。